
www.manaraa.com

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/352519457

Steady - Secure Software Development Report

Article · June 2021

CITATIONS

0
READS

17

1 author:

Some of the authors of this publication are also working on these related projects:

Florida Institute of Technology - Research Papers View project

Penn State University - Research Papers View project

Nimesh Ryan Silva

Florida Institute of Technology

20 PUBLICATIONS 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Nimesh Ryan Silva on 18 June 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/352519457_Steady_-_Secure_Software_Development_Report?enrichId=rgreq-902cd7fcd936423109ddc1a53b271517-XXX&enrichSource=Y292ZXJQYWdlOzM1MjUxOTQ1NztBUzoxMDM2MDU4MTgzNTk4MDgyQDE2MjQwMjY5Mjg1OTU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/352519457_Steady_-_Secure_Software_Development_Report?enrichId=rgreq-902cd7fcd936423109ddc1a53b271517-XXX&enrichSource=Y292ZXJQYWdlOzM1MjUxOTQ1NztBUzoxMDM2MDU4MTgzNTk4MDgyQDE2MjQwMjY5Mjg1OTU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Florida-Institute-of-Technology-Research-Papers?enrichId=rgreq-902cd7fcd936423109ddc1a53b271517-XXX&enrichSource=Y292ZXJQYWdlOzM1MjUxOTQ1NztBUzoxMDM2MDU4MTgzNTk4MDgyQDE2MjQwMjY5Mjg1OTU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Penn-State-University-Research-Papers?enrichId=rgreq-902cd7fcd936423109ddc1a53b271517-XXX&enrichSource=Y292ZXJQYWdlOzM1MjUxOTQ1NztBUzoxMDM2MDU4MTgzNTk4MDgyQDE2MjQwMjY5Mjg1OTU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-902cd7fcd936423109ddc1a53b271517-XXX&enrichSource=Y292ZXJQYWdlOzM1MjUxOTQ1NztBUzoxMDM2MDU4MTgzNTk4MDgyQDE2MjQwMjY5Mjg1OTU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nimesh-Silva?enrichId=rgreq-902cd7fcd936423109ddc1a53b271517-XXX&enrichSource=Y292ZXJQYWdlOzM1MjUxOTQ1NztBUzoxMDM2MDU4MTgzNTk4MDgyQDE2MjQwMjY5Mjg1OTU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nimesh-Silva?enrichId=rgreq-902cd7fcd936423109ddc1a53b271517-XXX&enrichSource=Y292ZXJQYWdlOzM1MjUxOTQ1NztBUzoxMDM2MDU4MTgzNTk4MDgyQDE2MjQwMjY5Mjg1OTU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Florida_Institute_of_Technology?enrichId=rgreq-902cd7fcd936423109ddc1a53b271517-XXX&enrichSource=Y292ZXJQYWdlOzM1MjUxOTQ1NztBUzoxMDM2MDU4MTgzNTk4MDgyQDE2MjQwMjY5Mjg1OTU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nimesh-Silva?enrichId=rgreq-902cd7fcd936423109ddc1a53b271517-XXX&enrichSource=Y292ZXJQYWdlOzM1MjUxOTQ1NztBUzoxMDM2MDU4MTgzNTk4MDgyQDE2MjQwMjY5Mjg1OTU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nimesh-Silva?enrichId=rgreq-902cd7fcd936423109ddc1a53b271517-XXX&enrichSource=Y292ZXJQYWdlOzM1MjUxOTQ1NztBUzoxMDM2MDU4MTgzNTk4MDgyQDE2MjQwMjY5Mjg1OTU%3D&el=1_x_10&_esc=publicationCoverPdf

www.manaraa.com

Running head: FINAL REPORT 1

CYB 5660 Final Report

Nimesh R. Silva

Florida Institute of Technology

Author Note

Dr. Bulumulle

www.manaraa.com

FINAL REPORT 2

Introduction

Over the last few years, the adoption of open-source software (OSS) in the software

industry has accelerated, and many commercial products now include a variety of OSS libraries.

Any of these OSS libraries' vulnerabilities can have a significant impact on the security of the

commercial product that bundles them. OWASP recognized the importance of this issue by

included "A9-Using Components with Known Flaws" among the Top-10 security vulnerabilities

in 2013. The public exposure of vulnerabilities such as Heartbleed and ShellShock in 2014

helped to increase awareness of the problem even more.

OSS libraries with known vulnerabilities are discovered to be utilized for some time after

a corrected version has been provided, despite the deceptive simplicity of the available fixes (the

most evident being: update to a more recent, patched version). At development time, updating to

a more recent, non-vulnerable version of a library is a simple approach. When a vulnerable OSS

library is part of a system that has already been deployed and made available to its users,

however, the problem might be much more difficult to solve. Any change (including updates) to

major enterprise systems that support business-critical functions may result in system downtime

and comes with a cost.

This study proposes a pragmatic approach to decision-making that helps to simplify the

process. This is accomplished by automatically creating actual proof supporting the argument for

immediate patching (where possible). The application uses (part of) a library for which a security

fix has been released in response to a vulnerability. The technique integrates seamlessly into the

standard development cycle without demanding additional effort from developers and is

independent of programming languages and vulnerability kinds.

www.manaraa.com

FINAL REPORT 3

Background

To determine whether a certain vulnerability in an OSS library is important for a certain

application, look at the accompanying security patch, which is the set of changes made to the

library's source code in response to the vulnerability. After that, the strategy is founded on the

following pragmatic assumption:

• There is a considerable possibility of the vulnerability being exploited whenever a

program that includes a library (known to be susceptible) runs a fragment of the library

that would be updated in a security patch.

If the traces were gathered before the introduction of a security patch and all existing

library versions are affected by the vulnerability, the library versions can be ignored. In other

circumstances (for example, if traces are older than a patch and the corresponding constructs

exist in both vulnerable and patched library versions), the version of the library producing the

trace must be identified and compared to the versions affected by the vulnerability.

System Design and implementation

The source code can be founded here https://github.com/nrs011/steady. It is forked from

eclipse/steady.

When a new vulnerability for an open-source library is published, the Patch Analyzer is

triggered. It communicates with the appropriate Version Control System (VCS), detects all

programming constructs that have been modified to address the vulnerability, and uploads their

signatures to the central Assessment Engine. The vulnerable and patched revisions of all relevant

source code files of the library are compared to create this change list. The relevant commit

revisions can be found in the vulnerability database, searched in the commit log, or manually

defined.

https://github.com/nrs011/steady

www.manaraa.com

FINAL REPORT 4

The Runtime Tracer gathers and uploads execution traces of programming constructs to

the central engine. This is accomplished by introducing instrumentation code into all of the

application's programming constructs as well as all of the included libraries. Instrumentation can

be done in two ways: dynamically during runtime or statically before the application is deployed.

All programming structures utilized at runtime, including libraries included at runtime and

portions of the runtime environment, can be traced using the former.

The main disadvantage of the Runtime Tracer is its influence on application startup,

especially when a large number of components must be loaded before the application can be

made available to users, as in the case of application containers. Static instrumentation does not

affect the startup time of the program and can be used in situations where the runtime

environment cannot be set up for dynamic instrumentation, such as PaaS systems. It cannot,

however, ensure that all programming constructs used at runtime are covered.

The Source Code Analyzer reads the application's source code, detects all of its

programming constructs, and uploads their signatures to the central engine along with an

application identifier.

www.manaraa.com

FINAL REPORT 5

The Assessment Engine is realized utilizing an SAP Hana database where the change-list,

trace-list, and programming constructs are stored and manipulated. The results are accessible via

a web frontend.

www.manaraa.com

FINAL REPORT 6

Discussion

This methodology has natural applicability in continuous build and integration systems

when considered as part of the whole software development lifecycle. When integrated into such

systems, this tool may gather traces regularly and provide a timely warning when one or more of

the libraries in use are discovered to be vulnerable.

At the time of writing, work on adapting this prototype to run as part of a Jenkins build is

underway. It is planned to complete this implementation and assess it in significant development

projects in the future (e.g., with over a hundred libraries).

www.manaraa.com

FINAL REPORT 7

Conclusion

This research took a practical approach to answer a fundamental question: Does a

vulnerability in bundled open-source libraries influence an application? This method aids in

determining whether a vulnerability requires immediate repair. It can be smoothly incorporated

into industry-scale build and integration systems and is generic in terms of programming

languages and types of vulnerabilities.

The conceptual approach, as well as a physical implementation as a tool, were described

in this work, with the capabilities shown using an exemplary case.

www.manaraa.com

FINAL REPORT 8

References

OWASP. (2017). OWASP Top Ten. Retrieved June 5, 2021, from Owasp.org website:

https://owasp.org/www-project-top-ten/

Williams, J. (2012). THE UNFORTUNATE REALITY OF INSECURE LIBRARIES.

Retrieved from website: https://owasp.org/www-pdf-archive/ASDC12-

The_Unfortunate_Reality_of_Insecure_Libraries.pdf

View publication statsView publication stats

https://owasp.org/www-project-top-ten/
https://owasp.org/www-pdf-archive/ASDC12-The_Unfortunate_Reality_of_Insecure_Libraries.pdf
https://owasp.org/www-pdf-archive/ASDC12-The_Unfortunate_Reality_of_Insecure_Libraries.pdf
https://www.researchgate.net/publication/352519457

	Introduction
	Background
	System Design and implementation
	Discussion
	Conclusion
	References

